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SUMMARY 

A solution adaptive grid (SAG) method which redistributes the nodal points of a function according 
to its curvature is presented. A single, user-selected step parameter, P, is available for controlling the 
maximum step size, allowing the application of the technique to a wide variety of problems. Three test 
cases are cited (1) the 1-dimensional inviscid Burgers equation, (2)  the Falkner-Skan equation and (3) the 
finite-volume form of the Navier-Stokes equations for transonic aerofoil flows. In all three cases, significant 
solution improvement in terms of accuracy and convergence acceleration were achieved. 

KEY WORDS Solution Adaptive Grids (SAG) Mesh Generation Techniques Burgers Equation Falkner-Skan 
Equation Viscous Aerofoil Flows Navier-Stokes Equations 

INTRODUCTION 

Solution adaptive grid (SAG) methods have seen increasing application in recent years. 
In most cases, the spatial locations of nodal (1-dimension) or mesh (2-dimensions) points are 
modified during program iteration according to a measure of solution function gradient, curvature 
or a combination of gradient and curvature. In a fairly early paper that served as a basis for 
the work described here, Elsholz and Haase’ used the curvature of wall-normal production 
density for chemical reactions in boundary layers in order to redistribute nodal points. Dwyer 
et a1.’ have used a combination of function curvature and gradient in problems concerning fluid 
dynamics, heat transfer and flame propagation. 

Gradients of velocity, internal energy, or Mach number were used in the 2-dimensional mesh 
adaptation of Gnoffo3 for the supersonic flow about re-entry vehicles. In contrast, Acharya and 
Patankar4 chose the curvature of the temperature distribution for nodal point adaptation in 
thermodynamics problems. As an exception to these methods, the work of Kutler and Pierson’ 
was aimed at minimizing a measure of numerical truncation error through point redistribution. 
In all cases, redistribution was carried out at varying frequencies during the iterations, and im- 
provement in solution resolution was clearly evident. Seldom mentioned, however, was the effect 
of grid adaptation on solution convergence and accuracy. 

This paper describes the theory and new applications of the present method. The examples 
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cited are meant to show the results of only a single adaptation; that is a converged solution to 
the respective fluid dynamic problem is used as a basis for a supplementary calculation with a 
new mesh. The advantage of the method described here is its simplicity and applicability to a 
wide range of problems. The effect of grid adaptation on accuracy and convergence has also 
been investigated and the results are reported here. 

FORMULATION OF THE PROBLEM 

In numerical fluid dynamics the equations governing fluid motion are often approximated 
by the means of difference equations, solved at discrete locations in the finite problem space. 
Associated with these approximations is a certain amount of numerical error (e.g. truncation error) 
which we desire to keep as small as possible. 

As an example of this, we consider a simple one-dimensional boundary value problem. Using 
non-uniform spacing, the first derivative may be approximated up to the order O(h,,h,) which 
is O(h2) if h, = h, or O(max(h,,h,)) if h, $. h, (h,,h, are neighbouring step sizes). The discrete 
approximation Uj of a function uj can be written as 

Ui = U: + &h,h2uY, (1) 

resulting in a primary local truncation error proportional to the third derivative of u. In 
general, if the higher order derivatives associated with truncation errors are negligible, then the 
error itself is negligible. When this is not the case, then the step sizes (hi) between adjacent points 
must be decreased. 

If constant step sizes are used, this means an increase in the number of grid points over the 
entire space, which for most problems becomes prohibitively expensive. A logical distribution 
would place more points in regions where large values of higher order derivatives occur, and 
fewer points in regions where these derivatives are of minimal significance. 

The problem is that we seldom know in advance where exactly large values of these derivatives 
occur. If however, the computational grid is adapted to preliminary results in such a way as to 
minimize the aforementioned error term, we can expect the final solution to be an improvement 
in terms of accuracy over the solutions obtained on uniform or arbitrary grids. In addition, one 
would expect the same accuracy for this, a so-called ‘solution adaptive grid’ as for a uniform 
grid having many more points. 

It is assumed that the redistribution of grid points should be based upon the distribution of 
curvature of the function u shown in Figure 1 .  The curvature is obtained at each point i by the 
central difference approximation 

’,h2-h,), for i = 2 , 3  ,..., N-1,  

using forward and backward difference operators Au, = uic , - ui and Vu, = ui - ui-  ,, respectively. 
For the sake of simplicity we may set a, = a, and uN = aN- ,. 

By normalizing the curvature with the constant step size h, 

we obtain a weighted measure ki of curvature at each point: 

hi 
k, = luil-, i = 2,3,. . . , N ,  

h (4) 
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Figure 1. Distribution of a function u(x) and the appropriate transformation function S(x) normalized to unity 

with 
h. = x. - x. 

1 1 1 - 1 .  

In order to damp extreme values in curvature and to increase the interval of influence, a new 
measure of curvature, 

1 2n 

2n+ 1 j = o  
a. = - k i + j - , ,  i = n + l ,  ..., N - n ,  ( 5 )  

is introduced for inner points. At boundaries a similar but one-sided formula is used. In all cases 
described here a value of n = 1 was used, resulting in smoothing by three points. 

The transformation function is finally obtained from the integration of a (see Figure 1): 
L 

S i =  aj, with S, = O .  
j = 2  
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One notices that the transformation function S(x,) has its maximum slope where the function u(xi) 
has its maximum curvature, and its minimum slope where the curvature of u(xi) is also minimal. 

The table of values obtained from Si = S(xi) can also be used in its inverse form xi = x(Si). By 
dividing the interval 

X N  

S N = i S  nidx 
x1 

into N - 1 subintervals, 

(7) 

one can obtain through interpolation the new distribution Ji = J(S'). In order to guarantee 
monotonicity this interpolation must be linear; then from the existence theorem the inverse 
function exists because S N  is continuous. 

The new step sizes found by the procedure just described depend completely on the behaviour 
of the function u(xi). If this function is piecewise linear, then some of the ni become zero. This can 
lead to uncontrollably large step sizes. Since, however, the accuracy of numerical methods always 
depends on the chosen step size, an additional condition must be introduced, controlling the 
maximum interval between two adjacent points. The step parameter P is defined as 

h,,, = Ph, (8) 
where h is again the step size for a uniform point distribution (see equation (3)). 

The gradients of S(x) are now compared against a minimum value 

which is controlled by P. Therefore, it proves necessary to use an additional linear transformation 
in order to ensure such a minimum gradient of value q. 

NUMERICAL EXAMPLES 

Inviscid Burgers' equation 

numerically by several  author^.^-^ It may be written in conservation form 
The inviscid Burgers' equation with backward step initial conditions has been investigated 

au 1 q u 2 )  

at 2 ax 
-+--=o 

-1, 0 5 < x 6 1  

With the initial conditions (1 1 )  a steady-state solution will be performed. Therefore, a time- 
dependent adaptation of grid points is not necessary. Equation (10) is solved numerically using an 
explicit Runge-Kutta (RK) three step method." In contrast to two-level RK schemes, the extra 
stage can be used either to improve accuracy or to extend the region of stability. All calculations 
have been carried out using a Courant number of 1.6 (the stability analysis allows a maximum 
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Courant number of 2.0) and the [O, 11-interval divided into 3 1 subintervals, i.e. 32 nodal points. The 
method is second order accurate in time and space. Following References 9 and 11, a second order 
Shuman type filter has been used in order to damp out severe oscillations in the final solution. 

Furthermore, the steady-state solution is defined as that solution obtained after reaching the 
maximum norm 

n 

/ /  G /I = maxIu:+' - u: / ,  (12) 
i 

where N denotes the time level or the iteration count. In each case, E was chosen to be 5 x 
taking into acount single precision accuracy for an IBM 3083. 

As can be seen in Figure 2 severe oscillations are not evident, but compared with the exact 
solution the numerical one is smeared, the degree of smearing depends on the step parameter P .  
Furthermore it can be seen that an error measure I u,,,,~ - unurnerlca, 1 is nearly constant, independent 
of P. 

Figure 3 gives the iteration count with respect to the step parameter P .  It is interesting to 
recognize that an increase in the value E for the error norm (from 5 x causes a 
constant iteration count for all P .  The solution based on a step parameter P = 1.6 is defined to be 
optimal with respect to the minimum number of iteration cycles needed to reach the steady state. 

It should be assumed for solving the Burgers equation that a further step-size reduction in the 
jump region ( P  > 1.6) gives even more accurate results, but there still exists a limitation due to the 
total number of nodal points. See for example the distribution of grid transformation in Figure 4. 
From this Figure the concentration of nodal points in the jump region can be seen. For P = 3, the 
maximum step size at the right-hand boundary of the [0.5,1] interval is three times larger than the 
constant step size resulting in a significant increase in nodal points within the first 10 per cent of the 

to 5 x 

l0.0 0.2 0.4 0.6 0.8 1 . o  
X 

CII step parometer P - 1.0 constant step s i z e  
0 P - 1.6 opt imal nodal point distribution 
A P - 3.0 - Exact solution 

Figure 2. Solution of the inviscid Burgers equation as a function of the step parameter P 
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intervals as well as in a jump in the sequence of mesh points at x = 0-84 and a mesh size quotient 
hJh2 of about 6 at  this point. It is obvious that the iteration count will increase, using such large 
step parameters. 

Falkner-Skan boundary layer equation 

Skan equation: 
Laminar, self similar boundary layers in incompressible flows are governed by the Falkner- 

f’” + ff” + p( 1 - f ’ 2 )  = 0, (13) 

with the boundary conditions 

The prime denotes differentiation with respect to the transformed independent variable q. is the 
pressure gradient parameter, being zero for Gat plate flow; p = - 0.1988 denotes separation. 

Equation (13) is treated as a non-linear ordinary differential equation in f’. It is solved 
numerically using an accurate Hermitian difference scheme also known as the Mehrstellen scheme, 
or collocation method, first proposed by Falk.12 

The problem is simultaneously solved (1) with N equally spaced grid points, (2) applying the 
solution adaptive grid technique and (3) with 2N - 1 points again equally spaced. The calculation 
shown first uses qmax = 8, N = 16 and p = - 0- 19, indicating a boundary layer profile which is close 
to separation. A converged solution is obtained using the already mentioned error norm (12) of 
E = 5 x lo-’. Comparisons are made with an N = 181 solution, defined to be exact. The measure of 
error is the root-mean-square error between the N = 181 and N = 16 uniform grid solutions, and 
the N = 181 solution and the interpolated values derived from the unequally spaced N = 16 grid, 
respectively. In Figure 5 the boundary layer profiles resulting from the three different solutions are 
given, whereas Table I presents the more informative digital output. 

The SAG solution with P = 1.625 is defined to be optimal with respect to the root-mean-square 
error, as shown in Figure 6 given as a function of the interpolation polynomial. The interpolation 
becomes necessary to calculate the results from the solution adaptive grid approach at appropriate 
?-stations. Taking into account that the boundary layer profile has only one point of inflection it is 
evident to use interpolation polynomials of a degree not higher than 3; higher degree polynomials 
tend to oscillate between the nodal points and, therefore, will not effect the r.m.s. error in a positive 
way as it can clearly be seen from Figure 6. Included in this Figure are two solid lines denoting the 
error for the constant grids with N = 16 and 2N - 1 points, respectively. A drastic decrease of the 
r.m.s. error can be achieved using the present SAG approach instead of doubling the number of 
nodal points and-roughly-computation time. For the present case and based on the error norm 
value E = 040005, Table I1 gives the iterations needed for convergence and the computation time 
on an IBM 3083. 

The appropriate grid transformation function can be taken from Figure 7 for three different step 
parameters indicating directly the different regions of curvature in the f ’  distribution. Depending 
on the gradient of the transformation function one gets an increase in local step sizes where the 
gradient is larger than unity and vice versa. 

For /3 = 0.0, which gives the well known Blasius solution, we compared the results of the present 
methods with those obtained by Reference 5. For N = 15, the percentage error measure reduction 
can be taken from Table111 showing clearly the advantage of the present method. I, 11, I11 are 
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Table I. Solution of the Falkner-Skan equation as a function of mesh 
size for /I = - 0.19 

- 
i v f ;  f ;  f I 3  f k  

1 0.0 0.0 0.0 0.0 0.0 
13 0.53333 0.073829 0.069562 0.072749 0.069346 
25 1.06667 0.19981 0.19173 0.19780 0.19115 
37 1.60000 0.36945 0.35770 0.36669 0.35743 
49 2.13333 0.56085 0.54727 0.55784 0.54742 
61 2.66667 0.73981 0.72699 0.73702 0.72748 
73 3.20000 0.87364 0.86439 0.87165 0.86459 
85 3.73333 0.95120 0.94548 0.95015 0.94585 
97 4.26667 0.98521 0.98244 0.98490 0.98258 

109 4.80000 0.99645 0.99476 0.99646 0.99521 
121 5.33333 0.99929 0.99728 0.99935 0.99860 
133 5.86667 0.99987 0.99827 0.99990 0.99941 
145 6.40000 0’99997 0.99887 0.99998 0.99965 
157 6.93333 0.99999 0.99909 0.99999 0.99979 
169 7.46667 1.0 0.99950 1.0 0.99991 
181 8~00000 1.0 1 .o 1 .0 1 .0 

Subscripts have the following meanings: 
1:  uniform grid: N = 16 points 
2: SAG grid: 2nd order interpolation, N = 16 points, optimal ( P  = 1.625) 
3: uniform grid: 2N - 1 points 
4: ‘exact’ solution based on N = 181 points 

Table I1 

Computation 
R = 090005 Iterations time (see) 

Uniform grid, 29 0.08 

SAG, N = 16 33 0.10 
Uniform grid, 37 0.15 

N=16  

2N-1 

Table 111 Percentage error measure reduction for the Blasius solution 
Present work Reference 5 

P k I 11 111 k 1 11 111 

2.15 1 58.16 2.190 1898 1 - 14.1 75.2 - 118 
2.90 7 51.51 2.904 1673 7 76.6 75.2 1.86 

k is the order of the interpolation polynomial. 
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defined to be: 

I: solution using an optimal (SAG) grid compared to that for a uniform grid with N points 
11: solution with 2N - 1 nodal points compared to that for a uniform grid with N points 

111: improvement between I and 11; 111 = (I - II)/II 

To conclude at this point of discussion, the presented solution adaptive grid procedure uses the 
curvature of a given function-not necessarily known in advance-as a transformation function. 
The results show that this approach leads to an increase in solution accuracy which also means a 
reduction in truncation error. In Reference 5, however, the third derivative of the function is used as 
a measure for the transformation, but for schemes with other accuracies-as used here to solve the 
Falkner-Skan and Navier-Stokes equations-the truncation error is not proportional to the 
third derivative, but to the fifth for constant step sizes. For this reason, it was not the objective of 
this work to automatically optimize the truncation error. Instead the step parameter P was 
included to allow the application of the method to a wide variety of problems, the truncation errors 
of which are often difficult to estimate accurately. Therefore, one might assume that the present 
procedure holds for various types of numerical methods and the following discussion associated 
with two dimensional viscous flow problems is used as a verification. 

Viscous flow about the RAE-2822 aerofoil 

The presented SAG technique was applied to a two-dimensional flow problem. The compres- 
sible, transonic, turbulent flow over the RAE-2822 aerofoil was investigated numerically using a 
finite volume technique to solve the time-averaged Navier-Stokes equations. In order to simulate a 
turbulent flow, an algebraic turbulence modelI3 has been used. The finite volume method solves 
the resulting ordinary differential equations by the means of Runge-Kutta type integration14 and 
is closely related to a similar approach for solving the Euler equations, simulating inviscid flows." 
A body-fitted co-ordinate system permits a reasonable resolution of the rotational layers. 

The redistribution of mesh lines emanating from the aerofoil surface is based on the previously 
calculated pressure coefficient distribution along the surface. This redistribution presented the 
difficulty that the curvature of the pressure distribution is extremely large at the leading edge, 
resulting in an undesirably high concentration of points there. This left few points for mesh 
redistribution in the areas of interest, the shock region and the trailing edge. Thus the SAG method 
used was modified somewhat, allowing for the exclusion of the leading edge in the redistribution. 
The junction between the leading edge and the remainder of the aerofoil proved at first to give rise 
to a large jump in mesh line step sizes. This was corrected with 3 sweeps of a Shuman filter over the 
newly distributed co-ordinates. An additional modification of the method was the treatment of the 
curvature of the pressure coefficient distribution at the trailing edge. Here, the values for a ,  
(lower surface) and uN (upper surface) appearing in equation (2) were not set equal to neighbouring 
values, but were instead calculated as in equation (2) using in both cases the first point in the wake 
behind the trailing edge. This was necessary in order to take into account the high dissimilarity in 
the pressure coefficient distribution on the upper and lower surfaces of the trailing edge for the 
chosen flow problem. 

As a demonstration of the effect of applying the SAG technique, the following test case has been 
performed for the RAE 2822 aerofoil, 'case 9' in Reference 15. 

The calculations are based on the uncorrected values: Mach number = 0.73, Reynolds 
number = 6-5 x lo6, angle of attack = 3.19". 

Eighty-three mesh points were used to represent the aerofoil surface and 32 mesh lines in the 
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direction moving away from the surface. A total number of 128 mesh lines refers to the number of 
surface co-ordinates + wake co-ordinates using a C-type mesh. 

The initial point spacing, see the lower mesh in Figure 8, is already non-uniform, having more 
concentrated points at the leading and trailing edges; in these regions a pressure distribution is 
assumed a priori showing larger curvature. The adapted grid in the upper part of the same Figure, is 
based on the surface pressure distribution calculated by means of the initial mesh. Therefore, 
concentrations of mesh points at  the approximate middle of the upper and lower surface as well as 
at the trailing edge are due to the curvature of that pressure distribution. 

Figure 9 presents the pressure coefficient distribution for the two meshes. The effect of the 
present solution adaption grid technique can easily be recognized. On the upper surface the shock 
region is much better represented as well as the pressure plateau in front of the shock. Furthermore, 
at the lower surface a better correspondence of the calculation with the measurement can be found 
at the start of the recompression region at about 40 per cent chord length. The poor 
correspondence of cp distributions for both meshes at the end of the shock region is thought to be 
related to boundary layer history effects as well as to shock-boundary-layer interaction problems 
which cannot be prescribed by the turbulence model used. 

Of significance in the prediction of aerofoil force coefficients is the calculation of the wall skin 
friction coefficient, cf (see Figure 10). In this Figure the results of the solution adaptive grid 
technique can be compared with results obtained by initially spaced meshes for N = 83 and 
N = 220 surface points as well as with measurements. Furthermore, but already indicated by the 
pressure distribution, a much better representation of the shock region can be obtained by the SAG 
approach. For the initially spaced mesh ( N  = 83 surface points) the boundary layer recognizes the 
pressure distribution on the upper surface as a steep pressure rise only, and not as a shock. The skin 
friction distribution based on the SAG technique (thick solid line) leads to a slight overprediction of 
the relaxation of the boundary layer in the region behind the shock as can be seen by comparing it 
with a solution in a much finer mesh with N = 220 surface points. 

To conclude at this point, the improvement of the solution accuracy which can be obtained by 
the present SAG method is appreciable. This can be underlined by comparing the computational 
efforts in Table IV. 

The computational time is based on a comparable convergence behaviour, i.e. for both cases 
the drag and lift coefficients differ only less than 0.1 per cent per timestep. Assuming the worse 
case, e.g. using a converged solution in the N = 83 mesh, applying the present SAG method 
(seconds of computer time) and performing a complete new calculation from scratch again, leads 
only to a doubling of computation time. Therefore, based on the fine mesh results a com- 
parable accuracy can be achieved by use of the present SAG technique with a computing time 
reduction of 7 5  per cent. 

Table IV. Computational effort 

Number of grid Computation time (h) 
points IBM 3038 

On the surface Total 

83 
220 

4224 1.6 
18980 13.0 
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CONCLUSIONS 

The conclusions from the work described in this paper are: 

(i) The use of the present SAG technique results in significant improvement with respect to 
increased accuracy and/or accelerated convergence. 

(ii) The application of the method to the Burgers and Falkner-Skan equations has provided 
the same or even better results as for calculations with twice the number of grid points 
evenly distributed. 

(iii) The user specified parameter, P, allows the ‘fine-tuning’ of the method for any particular 
problem. This is important for the maintenance of overall accuracy as well as for a ‘general 
purpose’ routine. 

(iv) The method (which exists as a stand-alone routine) can easily be added to existing 
programs. The technique has proved to be very simple in its application, with negligible 
increase in computation time. 

(iv) In all examples a redistribution of step sizes was based on converged calculations. The real 
benefit of such a method, however, comes by redistributing points during a calculation. This 
can easily be done after each single iteration or after a given number of iterations until 
convergence is reached. 

1. 

2. 

3. 

4. 
5. 

6. 

7. 

8. 

9. 

REFERENCES 

E. Elsholz and W. Haase, ‘Ein automatisches Verfahren zur Anpassung der Stutzstellenverteilung an eine 
Losungsfunktion’, fnterner Bericht Nr.  3, Technische Universitat Berlin, Institut fur Uberschalltechnik, 1972. 
H. A. Dwyer, R. J. Kee and B. R. Sanders, ‘An adaptive grid method for problems in fluid mechanics and heat transfer’, 
AIAA Paper 79-1464, 1979. 
P. A. Gnoffo, ‘A vectorized, finite-volume, adaptive grid algorithm applied to planetary entry problems’, AIAA Paper 
82-1018, June 1982. 
S. Acharya and S. V. Patankar, ‘Use of an adaptive grid for parabolic flows’, AIAA Paper 82-1015, June 1982. 
P. Kutler and B. L. Pierson, ‘Optimal nodal point distribution for improved accuracy in computational fluid dynamics’, 
AIAA Journal, 18, (l) ,  49-53 (1980). 
E. R. Benton and W. Platzman, ‘A table of solutions of the one-dimensional Burgers equation’, Quarterly of Applied 
Mathematics, 195-212 (1972). 
R. B. Kellogg, G. R. Shubin and A. B. Stephens, ‘Uniqueness and the cell-Reynolds number’, S A M  J .  Numerical 
Analysis, 17, (6) 733-739 (1980). 
R. W. MacCormack, ‘Status and future prospects of using numerical methods to study complex flows at high Reynolds 
numbers’, AGARD, Lecture Series No.  94, 1978. 
M. Naar, ‘Untersuchung zweier moderner Differenzenverfahren und ihre Anwendung auf Probleme der Stromungs- 
mechanik’, Dornier Bericht Nr.  82 BF/18B, 1982. 

Mechanics, B. Brosowski and E. Martensen (eds), Peter Lang Publication, 1982. 

Runge-Kutta time stepping schemes’, Proceedings of AIAA Comp. Fld. Dyn. Con$. June 1981. 

10. W. Haase and M. Naar, ‘Hyperbolic solvers for the Euler equations’, in Proceeding ofMathematical Methods in Fluid 

11. A. Jameson, W. Schmidt and E. Turkel, ‘Numerical solutions of the Euler equations by finite volume methods using 

12. S. Falk, Zeitschrqt fur angewandte Mathematik und Mechanik ( Z A M M ) ,  45 (1965). 
13. B. Baldwin and H. Lomax, ‘Thin-layer approximation and algebraic model for separated turbulent flows’, A f A A  Paper 

14. W. Haase, W. Wagner and A. Jameson, ‘Development of a Navier-Stokes method based on finite volume solution 
techniques for the time-dependent Euler equation’, Proceedings ofthe GAMM-Conference on Numerical Methods in 
Fluid Mechanics, in Notes on Numerical Fluid Mechanics, Vol. 7 ,  Vieweg-Verlag, 1984. 

15. P. H. Cook, M. A. McDonald and M. C. P. Firmin, ‘Aerofoil RAE 2822-pressure distributions, and boundary layer 
and wake measurements’, AGARD-AR-138, 1979. 

78-257, 1978. 




